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1 PREFACE
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"Fragment and Projectile Penetration Resistance of Soils," Task 04, Work

Unit 013.

The research was accomplished by Mr. R. S. Bernard (WES) and

Professor S. V. Hanagud, Georgia Institute of Technology, during the

period July 1973 to June 1974 under the supervision of Dr. J. G.
Jackson, Jr., Chief of the Soil Dyna ics Division, S&PL. Messrs. J. P.

Sale and R. G. Ahlvin were Chief and Assistant Chief, S&PL, respec-
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CONVE2 SIONi F'ACTORS, U. 'S. 6USTOMARY TO MMI'IC (SI)

V NITS OF ?EASURDENT

U.i S., customary units. of measuremenzt used in t-4his report ,canbec-

verted to metric (SI)' units as-folloiis:.

Multiply'Bz To.'ObtAin

inches 2.54 cenitimetres

feet 0.30o48 metres

'pouknds (mase) 0.14535924 kilograms
slug-square feet 1.353 kilogram-square metres,

rpounds (mass) per cubic foot 16.018146 -kilograms- per cubic metre

slugs per cubic toot 515.3788, kilogr,,w.. per cubic metre

pounds (korce) per square inch 68914.75T pascals

kips (force),,per square inch 68914.757 kilopascalg

feet per second 0.30o48 metres per second

degrees (angle) 0.01714539 radians

Note: 1 kbar =1,000 bars = 14,500 pounds per square inch
-100 megapascals.
1 slug =32.2 pounds (mass).
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DEVLOPENTOF A PROJECTILE PENETRATION THEORY

PENETRATION THEORY FOR SHALLOW TO MODERATE DEPTHS

PART I,: INTRODUCTION

Background

1. The phenomenon of projectile penetration has been the object

of numerous analytical and experimental investigations over the past

two centuries.1 Until recent years, successful analyses were of an em-

pirical or' semiempirical nature, utilizing various target resistance

functions and pseudoconstants which were inevitably drawn directly from

penetration experiments. As a result, the subject of penetration re-

[ mained isolated from the rest o >mechanics because the relation between

target constitutive properties and penetration resistance was unknown.

Nevertheless, a number oIV useful empirical equations were developed

which afforded reasonable, stimates of penetration depth for a variety
of situations. Unfortunately, the reliability of such equations is

limited to the range of test conditions for which they were deduced, and

the accuracy of prediction may dwindle significantly with extrapolation

to situations which have not been characterized experimentally.

2. The last decade has given rise to a more basic approach to

penetration through the use of digital computers. In various efforts,

the details of target and projectile motion have been analyzed by means

of two-dimensional finite-difference techniques employing realistic con-

5-7stitutive properties for both target and projectile.5  While a finite-
difference solution may achieve good agreement with experimental observa-

tion, as shown in Reference 7, its execution is cumbersome and costly,

thus diminishing its utility as a practical engineering tool. However,

this approach represents a powerful device for examining the details of

target and projectile behavior, indicating the relative consequences of

different simplifying assumptions, and providing a means of determining

what mechanisms are most important in the projectile-target interaction.U 5



3. At the present time, #L is a growing need for a simple

/ theory which affords reliable analyses of the impact and penetration of

rigid projectiles such as missiles, bombs, 'bullets, shel fragnents,

artillery and mortar rounds, and air-delivered mines and sensors into
targets such as Soil, r~ck,.concrete, and metal. Ther esults Of these
analyses could be used in design and optimization, both from the offen-

sive 6,h defensive points of view. In July 1973,,a small research ef-

'fort was initiated under the sponsorship of the Office, Chief of, Engi-

neers,, to develop a, tractable projectile penetration theory for natural

and artificial earth targets. The general r~quirements were that the

Ktheory should'account for the penetration of homogeneous and layered
-targets by rigid'projectiles of various nose shapes and should deal at

least approximatelywith oblique impact. Further, the theory should be

derived from a consideration. of target constitutive properties without

recourse to penetration tests per se. The objective was to replace,

neither-empirical nor finite-differenceanalyses, but rather to provide

a practical tool for making reasonable predictions before the execution

of a penetration test or finite-difference calculation. The develop-

ments presented in this report are the re3ult of efforts conducted under

this program during the period July 1973 to June 1974. Report 2 will

document the extension of the present theory for application to very

deep penetration in homogeneous and layered targets.

Purpose

4. The purpose of this investigation is to build upon existing

penetration theory8 - 12 to develop an approximate but more general theory

meeting, the requirements stated above. The starting point for the pres-

ent work -is the so-called "'cavity expansion theory," originally applied

to projectile penetration by Goodier.
9'1 0

scope

5. Part II of this report outlines modifications of previous
8-12

theoretical work in 'which the effects of different nose shapes,

6



layered targets, and oblique impact are incorporated into a penetration

theory for rigid projectiles. In Part III, the modified theory is non-

dimensionalized, governing parameters are determined, and results of

parameter studies are presented. Part IV contains comparisons of theo-

retical results with experimental observations and two-dimensional

finite-difference solutions. Part V presents the conclusions and recom-

mendations. The theory of dynamic expansion of a spherical cavity in a

concentrically layered medium is developed in Appendix A. A discussion

of material compressibility as it relates to the cavity expansion theory

and the penetration theory is contained in Appendix B. The effect of

target acceleration on final penetration depth predictions is investi-

gated in Appendix C.

*-1 1'
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PART II: PENETRATION THEORY

Historical Background

6. The foundation for the present penetration theory was laid by
8

Bishop, Hill, and Mott, who applied the theory of spherical cavity ex-

pansion in a strain-hardening medium to penetration by a rigid static

punch. Goodierl0 later extended this work and applied it to the pene-

tration of a strain-hardening target by a high-velocity rigid spherical

12
projectile. Hanagud and Ross modified the cavity expansion theory to

account for a compressible medium by means of a locking approximation

and employed the results in Goodier's penetration theory.

Cavity Expansion Theory

7. The theory of dynamic expansion of a spherical cavity sur-

rounded by concentric layers of compressible locking, strain-hardening

material is developed in Appendix A. This cavity expansion theory forms

the basis for the penetration theory discussed in the present report.

The behavior of the material in shear (Figure A2) is characterized by

the compressive yield strength Y , the modulus of elasticity E , and

the strain-hardening modulus E .* The effect of material compressi-It
bility is approximated by means of an instantaneous locking assumption

whereby material in the plastic state is presumed to be compressed to a

uniform (i.e. locked) density p . As discussed in Appendix B, the

instantaneous locked density p, is a function of the instantaneous

average dynamic pressure in the plastic zone.

8. According to Equation A76, the compressive normal stress p

at the cavity surface is

P = P + P(ai + B2 a) p + pI (1)

* For convenience, symbols and unusual abbreviations are listed and de-

fined in the Notation (Appendix D).



The two terms, ps and p, which appear in Equation 1 are the sepa-

rate contributions due to material deformation (shear) and inertia, re-

spectively. Henceforth, the shear contribution ps will be called the

"shear resistance"; and the inertial contribution pI = P Bla + Ba2)

will be called the "dynamic pressure" where a , a , and 9 are the

radial position, velocity, and acceleration of the cavity wall, and B

and B are dimensionless inertial coefficients. For a homogeneous ma-
2

terial (i.e. no layering), p 1 B1 , and B2 are identified by Equa-

?. i. tions A87, A88, and A89, respectively. Moreover, these quantities are

functions of Y , E , Et , and the instantaneous locking strain

,. l.n p/p. , where p is the initial density.

Penetration Theory for Spherical Projectiles

9. While spherical cavity expansion and projectile penetration

* can hardly be regarded as the same process, the penetration of a solid

target by a rigid spherical projectile (Figure 1) suggests at least a

crude analogy with spherical cavity expansion. Goodier is the first

investigator to apply such an analogy to projectile penetration. Con-

sidering only rigid spherical projectiles, he makes the following

assumptions:

* I

S 4,

q !ao =D/ 2

Figure 1. Fully embedded spherical projectile

Lit 9



a. The embedded portion of the projectile frontal surface as

seen in the above figure is in complete contact with the

target.

b. During the embedding process (penetration depth q <

projectile radius a0 ), the projectile-targe- nteraction

is equivalent to a dynamic Brinell hardness test, and the

a al resisting force is given by Meyer's law.9 1 2

c. After the projectile is fully embedded (q > a0 ), only

normal stresses exist on the projectile frontal surface

(i.e., the effect of friction is negligible).

10. At this point, Goodier sets about to modify Equation 1 in

order to approximate the normal stress distribution on the frontal sur-

face of a fully embedded spherical projectile. To this end he makes two

assumptions: (a) the normal stress due to shear (i.e. shear resistance)

is constant over the frontal surface and is identical with ps in Equa-

tion 1; and (b) pl is maximum at the stagnation point 0 = 0 and zero

at the shoulder 0 = w/2 , where 0 is measured as shown in Figure 1.

Identifying a with the cavity radius a , the projectile velocity0

q with the cavity radial velocity a , and the projectile acceleration

with the cavity radial acceleration 9 , Goodier then proposes

pi = Pt(Blaoq + B2q2 ) cos 0 (2)

as a reasonable variation of dynamic pressure over the frontal surface

0 < 0 < n/2 . The compressive normal stress p on the projectile

frontal surface is then

p p + Pt (B1 a + B2
2 ) Cos 0 (3)

In Goodier's investigation the target is assumed incompressible such

that, pt = p , B1  1 , and B2 = 3/2 . The rationale employed by,' . . . 11,12 2

Hanagud and Ross is identical with that of Goodier except that the

target is considered compressible locking such that p£ > p , B1 < 1

B2 < 3/2, and the value of p5  is less than the incompressible value.

10



11. Integration of Equation 3 over the frontal surface leads to

the following equation of motion for- a projectile of mass :

-7a2[s + -aP,( 1ao + 12j2()]

21 2Equation 4t is rearrangedsc thatP~~a~ B4)](~

(+ -9 ira~p B)i -7ra 2(p + -9 pXB 2  (5),

Equation A88 indicates that B1  1 ; consequently, the effect of target

acceleration is small in Equations 4 and 5 when the added mass 3 for the

sphere is small compared to the projectile mass, i,e., when

2 << M (6)

With the ratio R defined as
a[ 3R Ot(7)

Ra

the effect of target acceleration on projectile loading is then small

when Ra << 1 . Moreover, the quantity (213)wa3p B1  probably repre-

sents a high upper limit on the added mass term, and penetration pre-

dictions are improved in some cases by discarding the added mass term

(i.e. the B1 term) altogether, as shown in Appendix C. At any rate,

Goodier's dynamic pressure distribution is adequately approximated by

, - .2 cos R << (8)

12. Although the rationale employed by Goodier leads to fairly

accurate predictions of final penetration depth (Appendix C), the

cos 0 distribution of pI is somewhat arbitrary. Other distribu-

tions of dynamic pressure produce projectile equations of motion iden-

tical to Equations 4 and 5. (For example, this occurs when cos 6 is
~i ~replaced by 1 - sin 0 in Equations 2 and 3.) Furthermore, the



projectile equation of motion must be integrated with, respect to time to

obtain the final depth of penetration, so that a "correct" prediction of

final depth alone indicates only that the average resisting force is

correctly predicted. Thus, there is some flexibility in Goodier's

rationale, insofar as the distribution of dynrimic pressure is concerned.

Moreover, it is this flexibility which allows extension of the cavity

expansion analogy to projectiles with nose shapes other than

hemispherical.

Penetration Theory for AxisZmmetric Projectiles

13. Before generalizing the penetration theory to nose shapes

other than hemispherical, it is necessary to reevaluate Goodier's three

basic assumptions. First, the assumption of complete contact between

the target and the embedded portion of the projectile nose (i.e. frontal

surface) is retained. Although this assumption is physically question-

able, it will provide an upper limit on the resisting force, at least

within the framework of the theory. Second, the dynamic Brinell hard-

ness analogy is discarded. Instead, an analogy with the cavity expan-
sion theory will be used throughout the penetration process to approxi-

mate the normal stress distribution on the embedded portion of the

projectile nose. (This will produce a higher target resistance during

the embedding process, which will improve penetration depth predictions,

especially for shallow penetration.) Third, friction effects are dis-

regarded at all times on the projectile nose and aft body alike. This

is a questionable assumption, although there is some evidence suggesting

that friction on the aft body is relatively insignificant.

14. Subject to the above assumptions, Equation 1 is now modified

in order to approximate the normal stress distribution on the nose of a

projectile with an arbitrary axisymmetric nose shape. As in Goodier's

rationale, the normal stress due to shear is assumed uniform over the

nose and equal to p5 " This leaves only the distribution pl to be

o' determined as a function of nose shape. The problem, of course, is to

arrive at a single rationale which generalizes the distribution of pl

12



to any axisymetric nose shape in a straightforward, ia*mer. Yurthr-

more, the resulting effect of nose shap e on final penetration depth

should be consistent with experimental observation.

15.. One approach is simply to guess the form of the pI distri-

bution in a-maner similar to Goodier.9 1 0 'Consider a projectile 'ith a

fully embedded conical nose, as shown in Figure 2., As in the case of a

I,

F4  Figure 2. Projectile with a conical nose

)hemispherical nose, one might assume that pi = pt(Blaoi + B 2) at the

stagnation point (i.e., at the tip of the nose, z = 0). At the base of

the nose, z = L , one might assume that the dynamic pressure reduces to: iPl = P£( 1 a~q + B2q.2) sinn 0 " This value correspondsto the value of
SP1  on a hemispherical nose at polar angle = 1t/2 - 0 when p1  is

'K distributed according to cosn e (as. opposed to cos 0). The variation

of pI from z =0 to z = L could then be expressed according to

-<I0

'P = PL(Blao + Bnn0 + (i - sinn )e (9)

where f(z) is a dimensionless function which decreases sifoothly from
unityat z=0 to zero at z = L .

t a 16. Since the problem at hand is to make an ad hoc modification

of the dynamic pressure for different nose shapes, there is basically

, - 13



nothing wrong with the approach outlined above. On the other hand, the

aritrariness in the development Of Equation 9 prompts one to seek a

more fumdamental scheme based (albeit crudely ) on the underlying physics.

The fact that the dynamic pressure which appears in Equation 1 depends

on both particle acceleration aid velocity suggests that the pI dis-

tribution for an axisy~metric projectile can be obtained by approxi-

mating the variation of particle acceleration and velocity along the sur-

face of the nose. Moreover, since most cases of practical interest
satisfy the condition Ra << 1 , the particle acceleration has only a

small effect on projectile loading, and it is then sufficient to ap-

proximate the variation of particle velocity alone.

17. In order to construct a reasonable distribution of particle

velocity v on the nose surface, one must first consider certain
p

physical constraints on particle motion:

a. A particle at the very tip of the nose (i.e. the stagna-

tion point) must move with the projectile velocity .

b. The component of particle velocity v normal to the

surface of the nose must be equal to the normal component

of projectile velocity (i.e., material cannot cross the

target/projectile interface).

c. Over the nose surface v must be continuous.-- p
d. Finally, it is assumed that the tangential component of

particle velocity vt is zero at the base of the nose.

Relative to these constraints, only the variation of vt  along the

length of the nose remains to be specified. Although it is quite pos-

sible that vt is a complicated function of target properties, projec-

tile velocity, nose shape, and relative position on the nose, the pres-

ent investigation considers only the effects of nose shape and relative

position.

18. Consider first the fully embedded conical nose shown in

Figure 2. The normal component of velocity v is given by

n

v 4 sin (lO)



where 0 is the cone -hbi-anjle., Nci efining

where iz is 'longitudiial distance from the nose tip and L is noje

length, the following equation. is., I)bosed for {

Vt  ( - x)11
2  cos, € , o<x<1 '(12)

The ,resulting expression for v is thenp

1/2 1I~ /2
=v * / 2) x coo (113)

2'I'

Le(&) .

a : D/2 : a@

27'

Figure 3. Projectile with an ogival nose

19. Consider next the fully embedded ogival nose shown in Fig-

ure 3. The normal component v is given by

15



- V '.j~sin -(i)

n -

vtuhere is the half-angle- for the circumscribed cone vhich, is tangent

to the ogive At any !ongitxidina1 position z . To Arrive at a func-F tional fors for v which is consistent with- Equation 12, the effective
cone length L-(*) and effective longitudinal position. ze(*) (Fig-

ure 3) are defined by

) U- cos 0. o ) (15)

and

z () a(*, ct 4,(16)

where

a(*) = R(cos 4 - cos (17)

and
a = ( -cos 0) (18)

The effective dimensionless cone position xe ) is then defined as

Xz ) e cos J(cos 4-cos0) (19)
e'() -" ,e 1 - cos 'cos"*

In order to be consistent with Equation 12, vt  is taken to be

ThstVt= 4 - xe(4 )1/2 CoBs (20)

SThus, the expression-for Vp. is

v + 2) = - x() cos2  1/] (21)

20. By replacing a by % a by v , and by in

Equation 1, the general expression for p. on an axisymmetric nose sur-

- face is



pj,- Ba q + p B v PB 2vp-, R <<1 (22)

where v is ,given by Equa.tions 13, and 21 for. cones and ogives, respec-

tively. T#us,

PI 2 PB 2( - x cos2 )2 for ,cones (23)

and

(2-.
PI2 01 - 'e( Cos 2 'q-4 for ogives (214)

when R < I . For a hemispherical nose, which is the limiting case

for-an, Oive, Equation 24 reduces to

Pi -  - cos4 Vi) " P,B2
2 (1 - sink 4) (25)

where 60= w/2 - * as indicated in Figure 1. A comparison of EquA-

tions 8, and 25 is presented in ,Figure 4 to show that for a hemispherical

LEGEND

-,_ GOODIER 9 . 10 EQUATION 8

PRESENT WORK, EQUATION 25

0 I

0 rn/4 r

POLAR ANGLE 0

Figure ).Graphic comparison of Equations 8 and 25 for distribution
of dynamic pressure on a hemispherical nose

o 17



A

nose the P distribution obtained by assuming a functional form for

v% is not rad ically different from Goodier t s assumed pI distribution.

21. With the normal stress distribution having been approximated

for conical and ogival noses (the ratiouale outlined in,,paragraphs 1T-20

can be readiY applied to other axisyrmetric nose shapes), the next step

1 is to. obtain the resulting projectile equations, of motion. This in-

volvos integrating the normal stress over the surface of the nose to ob-

tain the total axial resisting torce 'F acting on the project le.
z

Thus, for projectiles with conical noses, Equations 11, 13, and 22 are

substituted into Equation 1 and integrated over the surface of the nose

to. obtain

zLt

Mq = -f [p. + p1(z,0)sin 0 dA (z-)z  (26)

Z=0

where

dA (z-, 0) =2wr--, dan (27)

cos 7 dz

Likewise, for projectiles with ogival noses, Equations 19, -21, and 22 are

substituted into Equation 1 and integrated over the surface of the nose

to :obtain

Mq = -F = -f + pl(0) sin * dA (1) (28)

where

dA (.) = 2w tan z() dze (q) (29)
cos'4i e e

The resulting projectile equations of motion have the form

M 3 "P'B =-r '(p + pBLf (30)

V 18



, The quantity fn (nose shape factor) results from the variation of pl

over the nose and thus characterizes the relative effect of nose shape,

on the average inertial resistance of the target to penetration. For

conical noses of length L and base diameter D : 2a shown in Fig-0J
ure 2,. f is expressed a6

f =1--31

F where

L (-32)

For ogival noses of length L and base diameter D iilustrated in Fig-

ure 3, f is written as

fn =1-2 2 6 [P2 1n (2-c)-- (B 2 + 2 ])( - (3)

+ 1 (3B3 + 6B-+ 1)(B 2 ) - 2L (B' - c)

-1 (t + 6B + 3)(B3 - 3) + 1 (2B + 3)(B 4 - (33)

where

B- 2c c 2 (34)

2 (35)

hC 2 + I

and g = L/D . For ogives, the relation between the caliber radius head

(CRH) and ? is

CR11RH (36)

4- An ogive with = 1/2 is a hemisphere, for which case Equation 33 re-

duces to f = 2/3 and the right hand side of Equation 30 is identical
n

19__



with Equation 5. Thus, for spherical-projectiles and projectiles-with

hemispherical nose shapes, the distribution of particle velocity given

by Equation 21 leads to essentially the same equation of ,motion as that
obtained by and by Hanagud and Ross when R << 1.

22. Whether one chooses to develop projectile equations of motion

based on assumed stress distributions or assumed particle velocity dis-

tributions is of little consequence in the final analysis. The impor-

tant question is whether or not the equation of motion (30) leads to

reliable predictions of final penetration depth for projectiles with

different nose shapes. Moreover, the relative effect of nose shape on

final penetration depth should lie within experimentally observed bounds.

(For earth penetration, variation of nose shape from a blunt cylinder to

a sharp cone seldom increases final penetration depth by more than -a

factor of three. 2) Thus, the choice of a velocity or stress "distribu-

tion leading to f is neither arbitrary nor unique, and it is no acci-n

dent that variation of nose shape from a blunt cylinder to a sharp cone

reduces target inertial resistance in Equation 30 by no more than a fac-

tor of three. The tangential velocity distribution given by Equation 12

is chosen so as to produce precisely this effect.

23. While fn is presumed to characterize the relative effect ofn

nose shape on inertial resistance to penetration for a fully embedded

nose, the embedding process itself must also be considered in order to

determine the overall effect of nose shape on penetration depth, espe-

cially for shallow penetration. Assuming that fn approximately char-

acterizes inertial resistance during the embedding of the nose, the

equation of motion during the. embedding process is

[P + Ird3q)p~B wa 2(q)[P + P B f2] ,q :j ZBL7 Bf (37)

where an(q) is the cylindrical radius of the nose at the surface of
2the target, and 7a n(q) is the frontal area of the projectile which is

in contact with the target for a given penetration depth q <L , as

shown in Figure 5. When q > L , Equation 37 is replaced by Equation 30.

20
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'Figure 5. Projectile with partially embedded nose

A study of the relative effect of nose shape on final penetration depth

is given in Part III.

Penetration Theory for Layered Targets

24. The penetration theory for larered targets is based upon the

cavity expansion theory for a concentrically layered medium presented in

Appendix A. The physical situation to be considered is illustrated in

Figure 6. As is the casein Appendix A, the investigation is restricted

to the two-layer situation. Physically, this means that a target may

have any number of layers so long as the projectile equation of motion

is significantly influenced by no more than two layers at a time.

25. The projectile equation of motion is assumed to have the

same form as that for a homogeneous target, Equation 30. However, ap-

proximations for ps , BI , and B2 must be obtained through an appro-

I ~ priate analogy with the cavity expansion theory for a concentrically

layered medium. The point which becomes the point of maximum deforma-

tion on the layer interface is denoted by H(t) and coincides with the

projectile axis of symmetry (Figure 6). The initial distance from the
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Figure 6. Penetrabion of a layered target

target surface to the layer interface is H- . A first approximation
°

(probably representing an upper limit) to the effective deformation of

the layer interface is then obtained by replacing the penetrating pro-

jectile with a spherical cavity of radius a and radial velocity

located at the base of the projectile nose (i.e., at depth q L)

and assuming that the motion of the point H(t) is the same as that

of a point lying on a spherical surface of instantaneous effective

radius H - q + L and effective radial velocity H , concentric to

can be determined in the same way, where S - q + L is the instanta-

neous effective radius of tke front and S is its effective radial

velocity. First approximations to p B and B2 are then
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obtained by substituting a for a(t) , q for a , H - q + L for

* h° , H- q + L for h(t), H for h, S - q + L for b(t) , and

S for b in Equations A79-A84.

26. In direct analogy with Appendix A, H a H for S < H ,
0' 0

i.e., the deformation of the interface is assumed negligible prior to

the arrival of the plastic front. From Equation A57, S - q + L is re-

lated to a by
0

a
S q + L 1/3 S < H ( 38)

1

where 6 is given by Equation A53. The condition S < H is now re-
1 -0

placed by q _ q* where

a
q* = + L- 0- (39)

°1

which represents projectile penetration depth when the plastic front
reaches the layer interface. Equation 39 is structured so that S = H

0
when q = q, . When q _ q* , the projectile equation of motion is

r P (i) "' a2[p(l) + p B(l)f 2 q < q, (ho)

[M+ ia jq = P 10 s 2n

where, with the exception of B(l) and B(l) , the subscripts 1 and
1 2

2 denote first and second layer properties, and

(1) 2 ~ 4nl

i~~~ p0I ) _l 22 YIi i + 9 E I 2-0

II
al(Ho q + L) 6l(Ho q + L.)
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1 H q

K ad - 2and

2- - 2/3 2 1

4 -A

.2 r 1 ]-
- (1-, , 4 (HP:J (43)
2 )  (H° - q + i)

where 6 , 8 , and o are defined by Equations A90, A91, and A93, re-

spectively. Equations 41-43 are analogous to Equations A79-A81.

27. After the plastic front has reached the interface, the pro-

jectile equation of motion is

3 
2[*)M + ra p qB -a P( + , * q > q* (441)

where, with the exceptions of B and B , the subscripts I and

2 denote first and second layer material properties, qnd

(*p =2Y ln + 4 0

s 1 a + 0" Et 2 - q + L

+ 2Y 1nS-q+L+0 2[S +L3

2 "

+~ 02E2  (45)
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1 1'
Equations 49 and 50 give only crude (and probably upper limit) approxi-

mations to the effective positions of the layer interface H and the

plastic front S as the projectile approaches the interface. Moreover,

Equation 50 is reasonable only when 61 < 61 , i.e., when the distance
21

S -,q + L increases to the final value a /61/3 as the projectile en-

ters the second layer. On the other hand, when 6 > 6 , the distance

S -q + L decreases to the final value a n which case S

is simply located at H until S- q+L= ao/6

28. The approximations engendered by placing, the effective cavity,

'(A = a0 ) at the base of the nose require some modification when q > H

ie., when the nose extends beyond the effective interface depth H , as

illustrated in Figure 7.

-- EFFECTIVE INTERFACE
LOCATION, H (t)

ao D/2 r ,O10)

I
-I

Figure 7. Situation when q > H

2
In such a situation, the frontal area in contact with layer 2 is zaH H
and the frontal area in contact with layer 1 is w a 2 ao ) The

projectile equation of motion then becomes approximately

"26
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IM'
for q > H ,where

(**) (1) , (2) a

)a2 2
B2 - () P. 2  q < q, (514)

Sand

0) 0

B1k 1 3 q (56)

27p
a 2 (2) a.

:B2 B2 - - + - 2 B -2 q  < q *  (54)
a 1 ai 0o

2 2
{< ~ ~~~ ~~ +h quniie-p2 (2)2 N 9n B 2) are (55)rsstnen

aH. pt. 2 (2

B *(6



2 2(2) ln6 + 2+ (58)
p -

B (2) 1-

29. When the projectile nose becomes essentially embedded in the

second layer, i.e., when H - q + L-= a ° , the equation of motiorn is

approximately

[M+ 1 (29)B1 2 2

2 J o

at a -H-q+L (61)

': "which is the same as for a homogeneous semi-infinite target having the

30. When q < L , i.e., when the nose is not fully embedded in

the first layer of the target, Equations 38-61 still apply except that

a ° is replaced by a n and L is replaced by q (Figure 5).

Oblique Impact Theory,

, 31. The investigation thus far has disregarded projectile rota-
tion which may occur due to oblique incidence with the target. Conse-

quently, the next step involves a projectile with a conical nose of half-

angle 0 which strikes the target with an initial angle of obliquity

, as illustrated in Figure 8 The X,Y,Z right-hand, orthogonal

coordinate system is fixed at the point of impact on the surface of the

target. Figure 9 shows the x,y,z right-hand, orthogonal coordinate

system fixed on the projectile nose tip. The z axis coincides with the

28
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_,TARGET

SURFACE

Figure 8. Oblique impact of a pr6- Figure 9. Coordinate, systems
jectile with a conical nose

projectile axis of symmetry, and at impact the projectile y axis coin-

cides with the fixed Y axis. With w as the instantaneous angle of

obliquity, the, projectile may undergo rotation during, the embedding

process due to asymmetric loading over the shaded portion of the nose

(Figure 10). The rotation of the projectile about its center of gravity

(CG) is now investigated, subject to the following restrictions:

a. The investigation is limited to the embedding of the nose,

and projectile-target interactions aft of the nose are

not considered.

b. The effect of angle of attack upon the stress distribu-

tion on the 'projectile is disregarded.

c. The location zG of the CG is aft of the nose, i.e.

zG is greater than L , as shown in Figure 10.

d. The embedded surface of the nose is assumed to be every-

where in contact with the target.

e. Finally, the compressive normal stress Pn on the em-

bedded surface of the nose is assumed to be

P a 5  +p PBf 2  (62)Pn Ps + PB2fnq

where q is the translational velocity of the CG
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iXi

Figure 10. Projectile with conical nose partially embedded at
angle of obliquity w

Equation 62 corresponds approximately to the average compressive normal

' tress on a partially embedded nose when R a«< 1 (Equation 37).
32. For computation of forces and moments acting on the projec-

tile, the cone is divided into circular bands of radius r(z) and in-

finitesimnal height dz .However, in the shaded region (Figure 10),

only a portion of each band is subjected to p r and for each band

r(z) there is a limiting azimuthal angle 4' X(z) bounding the arc

over which p n acts. Looking along the projectile axis of symmetry in

the direction of positive z and considering a particular band r(z)

30
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VIE

0MAX PnCOSO

ii~ ~ ~ ~~ A 0C iue1.Prilyebde oewt edo iwo

one ur sees thealyebdddcnwt head-on viewshwinigr1.Testsspa on

both sides of the band from 0O to &ax~ , and the dashed arc

represents the portion of the band which is not embedded. 
(Note that

the xz plane is a plane of symmetry in Figures 9-11.) The relation be-

tween 4 ,z *w ,and 0 is as follows:
max

'os'Pmax z tan 0 tn 2 (63
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where

;'~ 164* I  ()

z z° (65),

2= 1- tan Otan (65

and z is the point Where the projectile axis of symmetry (. axis)

'intersects the target -surface (Figure 10). The infinitesimal moment

dMcG about the CG due to a force dF acting-on any infinitesimal

portion dA of the cone surface is

"CG = Y dF (66)

where y is the moment arm. (The .moment arm y is a position vector

from the CG to the point where the force dF acts.) However, since

the, xz plane is a plane -of symmetry, the total vector moment MCG

about the CG must be perpendicular to the xz plane (i.e., parallel to

the y axis). Thus, one need consider only components of y and dF

which lie in the xz plane. The x and z components of y are

Yx(Z,*) = z tan 0 cos ,* (67)

and

Y (Z) = z - zG (68)

where

z<L< zG  (69)

The x and z components of -dF acting on an infinitesimal surface

element dA = z dz dW/cos 0- are

dFx = -n tan 0 cosl z dz d (70)

32
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and

dF~ ~ (71)"Pn t aj 2 € z 4t d, 71

-j -I Thus, dM has only one omponent dMCG , Vnich 'is .parallel to the

y axis (a positive moment increases w) and is given by

d . CGz 3r*dF -yx dFz =p ta0ZG -z sec 2 z Cos dz.d* (72)

_Equations 70-72 are now integrated cder the ,ebedded surface of the nose

to-obtain the x and z components of'the resisting force, F and
x

F , and the total moment MCG

2p, 2 
2

F = - 6 f(g) dg (7

2 tan w2 2

F= vpnz2 tan0 + 'max & dJ '(74)

2 z 3 [ 2 2
MCG tan w G f - (75)

Where the factor "2" arises in Equations 73-75 due to symmetryabout

the xz plane, and

-z (76)
0
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St 1 X(77)

-(1 tai2 W tan2 0)1/2 (78)

ZG (79)
0

" 'i + tan 0 tanw) -Z<L
' l = (80)

__ zI  >TL

({ -tan 0 tan w) , z2 <L
' ' 2 = (81)

o L, Z2 > L

and Zmax ' Z and z2  are given by Equations 63-65. The integral

appearing in Equation 74 must be evaluated numerically. The integrals

appearing in Equations 73 and 75 are evaluated as follows:

t2 2

f(g) d- (J 2 2  J 7 o (82)

F2 L(2

-= r in, X > 0 (83)
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= ln f( + + 1 A2 < 0 (84)

E.2
~~9 E2 YE.

II( d [ 2 f( ) d , A2 #0 (85)

g-.
2

When X =0, Equations 82 and 85 reduce to:

f( ) d = (2 - 0, 2  (86)

~2.F2

f()C dE = 1 (3 + 1)(2 - 2)3/ 2 0 (87)

33. During the embedding of the nose (zI < L , Equation 64 and

Figure 10), the equations governing translation of the projectile CG

are

UMX = F cos w + F sin w , 0 < z < L (88)

x z -1

MY = 0 , 0 < z<L (89)

MZ F cos w -F sin , 0 < L (90)

z x (90)
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7 where X,Y,Z is the coordinate system shown in Figures 8 and 9, and

F and F are given by,-Equations 73 and 74. Likewise, during thex Z

embedding of the nose, 'the rotation of the projectile about the CG is

governed by

I MCG, 0 <z<L (91)

where

I = moment of inertia about CG

= angular acceleration
MG= moment about CG (Equation 75)

The rotational equation of motion (91) is limited to zI < L , and no

equation for has been developed for z > L . Thus, the present

theory of oblique impact is limited to the prediction of obliquity W'

and rotational velocity for 0 < z, < L , i.e., the theory considers

only those rotations which occur during the embedding of the nose. A '

realistic theory of deep penetration at finite angles of obliquity

*.~.- should account for aft body effects which are beyond the scope of the

present work.

34
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PART III: SOME PARAMETRIC IMPLICATIONS OF PENETRATION THEORY

The Nondimensional Equation of Motion

34. According to the theory developed in Part II, the equation of

motion for a projectile which impacts normal to the surface of a homoge-

neous target is

(M + 7a B)ji = -na2( n PkB 2fn ) (92)

When the ratio R is small, Equation 92 reduces to
a

2(ps + 2Bf

Mq -5 -wa n  p q 2 << 1 (93)

When the effect of compressibility is small (Appendix B), Equations A89

and A93 are approximated by

B 3 (94)
B2  2

and

pt - p (95)

Thus, Equation 93 gives way to

M4 a- -na s + 3 ) (96)

Equation 96 is now rewritten as

f a 2/ p n
-A n + 97)

ia2p a 2~ (-Sdon s qa

By defining the dimensionless quantities
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.2
u q2(98)

v
V0

and

3.-

a (99)
0

where v is the impact velocity, Equation 97 then becomes
0

2 2

o ~( u _n(+ f G u) (100)
2 3 p dy a2 n o
aoP 2 a Ps a

where

__2 2

G B (i01)
o Ps 2ps

The quantity G characterizes the ratio of maximum inertial resistance0

to shear resistance within the context of the cavity expansion and pene-

,tration theories presented i zhe present work. Since ps is primarily

a function of the target yield strength Y for the elastic-plastic case

(Equation A96), Equation 101 suggests another ratio, [

.2
s -- (102)5s - y

The ratio R is analogous to the so-called Reynolds number used in .4
S

fluid mechanics, in that it represents an order of magnitude index of
the ratio of inertial forces to shear forces in the target. Thus, the

ratio R will henceforth be referred to as the "solid Reynolds number."

35. For many metals and earth materials, the ptactical range of

P is 2Y . p _ 5Y , so that at impact ( v ) the iange of R is

G S Rs :C 3G . Using the symbol - to relate quantities which are of
0 5 0
the same order of magnitude, it is appropriate to write

R -G (103)
S 0
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The quantity Ml/7ra 0p in Equation 100 represents a nondimensional

acceleration (or force). integrat-ng Equation 100 from y = 0 to the
final nondimensional penetration ,depth, y. q /a ° , the folowing equa-

tion results:

Yp = 3fR in (1 + fnGoUl ) + 2 , >2 (lo)S3f R an

where

/ -6R n
u1 = + e a f n-v - (105)

1f = for cones, and (106)

() 7F- 2- 2

for ogives. The quantity e is defined in Part II, Equation 35, and

= L/D . After Equation 100 is solved explicitly for u(y) , the
following equations are obtained for the acceleration of a projectile

" with a conical nose:

-3Rafn(y-2)
2 -( + f G u)ea y > (108)

M_2 R fy 3/4 2

_(i + f a )y 2 (109)2 no 2,aops  4

Similar but more lengthy expressions can be obtained for ogives. For

Equations 104 and 108 to be applicable, it is obvious that the projec-

tile must penetrate at least one nose length L . After having inte-
grated the approximate equation of motion (100) in nondimensional form,
it is now possible to examine explicitly the roles of the parameters

G , R , R , and = L/D . Furthermore, while the added mass term
0 s a
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3
1raLp; B has been neglected in Equations 93-109, the ratio Ra still

appears as a parameter in the nondimensional final depth of penetration
2 y p/a ,Equation 104.

FThe Shape of the Deceleration Curve

36. Probably the most stringent test of the present penetration
theory lies in the comparison of predicted deceleration versus depth or
time with experimental observations and with the results of detailed

two-dimensional finite-difference calculations, where available. For

the moment, however, attention is focused on the shape of the decelera-

tion curve in order to make a qualitative comparison with experimental

results. Projectiles with conical noses are amenable to such an exam-

ination because of the simplicity of Equations 108 and 109, but it is

emphasized that similar results can be obtained for ogives.

37. The deceleration curve has the same general shape whether

depth or time is chosen as the abscissa. The overall shape of the curve

is strongly dependent on G - R and on 1 = L/D . This is illus-
0 s

trated in Figures 12 and 13. The increasing portion of the curve cor-

responds to the embedding of the nose, and the decreasing portion cor-

responds to a fully embedded nose. Examination of experimental

results'' reveals that many observed deceleration curves tend to

be somewhat flat after the nose becomes embedded in the target, thus

having the general shape of the curves in Figure 12 (at least for earth

penetration), but the rapid decay shown in Figure 13 is rarely seen.

The present penetration theory leads to reasonably accurate predictions

of final penetration depth for 0 < R < 100 , but only the average
value of the deceleration is correctly predicted when R is signifi-
cantly greater than one. Moreover, the theory apparently overpredicts

the instantaneous target inertial resistance during the early part of

the penetration process, and the magnitude of this overprediction in-

creases as R increases from one. The net result is that the theory

tends to underpredict final penetration depths when R is very large
5

at impact.
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The Relative Effects of Nose Shape and Frontal Loading
on .Final Depth of Penetration

38. In the context of the present penetration theory, the effect

of nose shape is coupled with the effects of Ra and G Rs , so that

the final depth of penetration will not be proportional to some function

of nose shape alone. The nose performance ratio Rn is now defined as

_(no)

where q is the final depth of penetration for a projectile with a

given nose shape, and qTb is the corresponding quantity for an other-

wise identical blunt cylinder (4 = 0). Combining Equations 104 and 110

leads to

In (1 + fn G ou ) + 6f nRa
Sn olnR ~ ~ n = o p 11

where u is given by Equation 105. In Figures 14-17, Rn  is plotted

versus 4 for cones. and ogives with Ra and GO  as parameters. Fig-

ures 14 and 16 correspond to shallow penetration depths on the order

of a few nose lengths, and Figures 15 and 17 correspond to depths sev-

eral times deeper than Figures 14 and 16. The values R a 0.1 anda
R = 0.001 were chosen to conform approximately to the upper anda

lower limits of R in penetration tests conducted by Sandia Labora-
15,16 a

tories, and the value R = 0.03. represents an intermediate value.
a 2

For comparison Young's empirical correlation is inclided in Fig-

ures 14-17. Young's linear relation between 4 and final depth of

penetration was deduced from earth penetration data for a variety of

projectiles and impact conditions and represents something of an overallU2
average nose shape effect.

2

39. The present theory results in a nose shape effect which be-

comes more pronounced-as R increases. This simply means that, for

a given projectile diameter, a sharp nose is less effective for a heavy

'I projectile than for a light projectile as far as depth of penetration is
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Sconcerned. ise present theory also infers that nose shape is more
~effective in shallow penetration where the embedding of the nose con-

stitutes a significant portion of the penetration process.
~40. There have been various attempts to asdertain the relation

between final penetration depth and frontal loading W/wa W/A , where0

W is the projectile weight ahd A is the projected frontal area.

Young's empirical correlation, for example, infers that final penetra-

tion depth is proportional to the square root of W/A . The present

theory, on the other hand, yields an approximate linear relation between

final (dimensional) penetration depth and W/A for depths greater than

one nose length (Equation 104).

Parametric Differences Between Theoretical and

Empirical Results for Homogeneous Targets

41. Within the context of the present penetration theory, it is

evident that, for the penetration of homogeneous targets, final pene-

tration depth is approximately proportional to W/A and to the natural

log of the square of the impact velocity. Furthermore, the effect of

nose shape is coupled with the effects of W/A , impact velocity, and

target constitutive properties. Young's empirical equation fo- final

penetration depth,2 however, indicates that the final depth is propor-

tional to nose length, impact velocity, and the square root of W/A

regardless of target properties. Moreover, the relative penetrability

of the target is characterized by a single multiplicative constant which

must be derived from penetration experiments. Although Young's equation

may correctly reflect the relative effects of impact velocity, nose

shape, and W/A , it represents a statistical correlation of experi-

mental observations and offers little explanation in terms of underlying

physical phenomena. On the other hand, the present penetration theory

is based on certain assumptions about the underlying physical. processes

but produces trends somewhat different from Young's equation. Even

though the theory is "rationally" based, it may not be sufficiently
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realistic; A more realistic theoryk mitght result in trendssimilar to

those exhibited by Youg's equation.

t: Penetration of Layered Targets

4: 2. The relativiely complex treatmeint of the layered target in

Part II is important for predict.Ing projectile loading when the initial

layer thickness is comparable to the projectile hiose dimensions and/or

when the layers have extremely different ,properties., On the other hand,

when the layers are thick and have fairly similar properties, final

depth predictions, which approxiatethe results of the layered target

theory can be obtained simply by using the ,theory for homogeneous tar-.

gets and changing the material property #nput when the projectile reaches

a layer interface.
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PART IV: APPLICATIONS OF PENETRATION THEORY

Introduction

43. The penetration theory presented in Part I! is relatively

simple compared with two-dimensional finite-difference analyses. In-

order to demonstrate in part the applicability of the theory as an engi-

neering tool, theoretical results will be compared with two-dimensional

finite-difference solutions, empirical results, and experimental 0bser-

vations. However, before these comparisons are made, some comments are

in order:

a. Although the ratio R << 1 in all the examples to be
a3

presented, the added mass term ap B 1 will be retained

as an upper limit on the effect of target acceleration.

b. It will be shown that the solid Reynolds number R
s

provides a simple rule of thumb which indicates whether

or not the present theory is appropriate for a particular

L penetration problem.

c. Material properties and impact conditions are given in

both U. S. customary and metric (SI) units in the text,

[ but graphic presentation of results is given in U. S.

customary units to expedite comparison with other work.

Choice of Material Properties

44. The cavity expansion theory presented in Appendix A and the
penetration theory developed in Part II are restricted to materials

which exhibit bilinear behavior in shear, as shown in Figure A2. More-

overtU.4e assumption of rate-independent shear behavior is implicit in

the theoretical development. Real materials exhibit neither bilinear

shear behavior nor rate-independence, and the guidelines to be followed

when the present penetration theory is applied to real targets are:

(a) bilinear stress-strain curves should be chosen so as to approximate

the total area under experimentally obtained stress-strain curves, up to
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the point where complete failure occurs (i.e., where the slope becomes

negative); and (b) when predictions are to be made prior to the penetra-

tion of an untried target, it is best to make two sets of calculations

corresponding to the upper and lower bounds on Y , E , and Bt . Lower

bound properties canr be obtained from the results of static tests, while

upper bound properties must be estimated from the results of dynamic

tests.

Penetration of Rock

45. Thigpen7 has performed two-dimensional finite-difference cal-

culations analyzing the penetration of a nonrigid projectile into Madera

limestone and welded tuff. The present penetration theory is applied to

the same problems for a rigid but otherwise identical projectile. Fol-

lowing Thigpen, the targets are idealized as compressible elastic-

plastic continua of the von Mises type (compressive yield strength Y

independent of pressure). For the range of dynanic pressures considered

(P< V 0 ), the relation between pressure and density is

1P _ave)

where Pave is average dynamic pressure in the plastic zone (Appen-

dix B), and C is initial sound speed. The modulus E is essentially
0

constant for the range of pressures examined. For the limestone,

p 168 pcf* (2.69 gm/cm 3 )

E 3.15 x 106 psi (217 kbar)

Y = 1.37 x 104 psi (0.945 kbar)

* A table of factors for converting U, S. customary units of measure-
ment to metric (SI) units is presented on page It.
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I ', and

C = .12 x 10 fps (3.l x lo0 m/sec)0
For the tuff,

p = 115 pcf (1.84 gm/cm3 )

|6

E 1.09 x 106 psi (75.2 kbar)

Y = 5.51 x 103 psi -(0.380 kbar)

and

C0 =6.72 x 103 fps (2.05 x l03 m/sec)

For limestone penetration,

W = 67h lb (306 kg)

D = 8 in. (20.3 cm)

L/D = 3.0 (9.25 CRH)

and

v = 570 fps (174* m/sec)

For tuff penetration,

W = 1000 lb (1154 kg)

D = 9 in. (22.9 cm)

L/D = 2.4* (6.0 cRi)

and

v = 695 fps (212 m/sec)

h6, The predictions of the present penetration theory are com-

pared with Thigpen's results in Figures 18 and 19. Thigpen's decelera-

tion curves correspond to the motion of a particle on the projectile

axis of symmetry; in Figure 18 the particle is located 2 ft (61 cm) aft

4*9
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of the nose tip, and in Figure 19 the particle is locafted at the base of
the nose. The oscillation in Thigpen's deceleration curves is due to

nonrigidity of the projectile. 7 It is important to observe that in

these calculations the target shear resistance is very significant since

the values of R at impact are 0.86 and 2.17 for the limestone and
5

tuff, respectively. Moreover, the agreement with Thigpen's results

apparently provides justification for using Ps to characterize average

shear resistance to penetration, at least for homogeneous targets and

low values of R.s

Penetration of Concrete

47. Another test of the present penetration theory lies in the
comparison of theoretical predictions with those of empirical penetra-

tion equations. A fairly accurate efapirical equation for the penetra-

tion of armor piercing (AP) and semi-armor piercing (SAP) bombs into

reinforced concrete is given by
17

222WD0 . 2 1 5 /v \1.5
+ 0.5D + 15% (113)

with q in inches, W in pounds, A in square inches, D in inches,
Y in psi, and v in fps. Equation 113 is now used to predict the

0 18
penetration of a 2000-lb (907-kg) AP bomb into reinforced concrete,

with Y = 5000 psi (0.345 kbar), E = 4.10 x 106 psi (283 kbar), and
3

p = 150 pcf (2.4 gm/cm 3) . For the penetration theory predictions, the

modulus Et is taken to be zero, and the value of Xis the static
N,

value (5000 psi) as in Equation 113. In addition, the prsasure-density

curve in Figure 20 is used according to the procedure outline in Appen-

dix B and represents typical behavior of concrete under pressure.N'\The

bomb has D = 13.5 in. (34.3 cm) and L/D = 1.12 (1.5 CRH) . Normal\

impa, .. velocities range from 500 to 1500 fps (152 to 457 m/sec). Two

sets of theoretical predictions are made, corresponding to the compress-

ible and incompressible cases. These are compared with the results

51
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of Equation 113 in Figure 21. Since the penetration theory predictions

are made us4ng the static value of Y , they should be regarded as upper

bounds on predicted penetration depth. The results in Figure 21 corre-

spond to impact values of R in the range 1 R s 15 , in which the

inertial resistance of the target begins to predominate over the shear

resistance. Moreover, the agreement with Equation 113 provides some

A ; Justification for using the theory in this range of values of R" sI
52
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Figure 21. Penetration depth versus impact velocity
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Penetration of Soft Earth

8.As an example of penetration into soft earth, the normal im-

pact of a terminal delivery vehicle (TDV) into moist, sandy clay is con-

sidered. The target is one of the range areas at Jefferson Proving

53



7
19L

Ground, Indiana. The TDV has a total weight of 17.3 lb (7.85 kg), but

when the full length of the projectile is embedded in the target, the

projectile base separates, remaining at the target surface and reducing

the projectile weight to 13.6 lb (6.17 kg). The diameter of the pro-

Jectile is 3 in. (7.62 cm), the total projectile length is 17.7 in.

(45.0 cm), and the nose is an ogive, L/D = 1.45 (2.35 CRH). For the

target, Y = 50 psi (3.45 bar), E = 3000 psi (207 bar), and Et = 0,
19

obtained from dynamic unconfined compression tests. The undisturbed

target density p = 3.88 slugs/ft3 (2.00 gm/cm3. Experimental impact

velocities range from 350 to 610 fps (107 to 186 m/see) corresponding to

65 < R <S 200 . Since no pressure-density curve is available for the
s

target, two sets of calculations are presented, corresponding respec-

tively to the incompressible case and the compressible -case for

pt = 1.1p (probably representing a high upper limit on the effect of

compressibility). The theoretical predictions are compared with experi-

mental results in Figure 22. Since the experimental data are quite

scattered, it is difficult to come to any definite conclusions from this

comparison. However, within the framework of the theory, the incom-

prbssibile calculation is probably the more realistic of the two,

alt hough the predicted depths are somewhat low compared to the experi-

me tal results. Viewed in this light, the results seem to indicate that

R - 100 may represent an approximate upper limit on the range of ap-

p Icability of the pre..ent penetration theory.

Perforation of a Metal Slab

49. Perhaps the most stringent test which can be applied to the

penetration ,theory for layered targets developed in Part II is a situa-

tion in which the first layer is thin with extremely different proper-

ties from the second layer. Such a situation exists when a steel pro-

jectile with a diameter of 0.3 in. (0.762 cm) strikes a 6061-T6
aluminum slab with a thickness of 1 in. (254 cm). This, of course,

represents a case where the first layer is aluminum and the second layer

is air. Using the HEMP code, Wilkins2 0 has performed a two-dimensional
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finite-difference analysis of the perforation of l-in.-thick aluminum

slab by a 0.3-in.-diam steel projectile. The projectile has a conical

, nose, L/D = I , a weight of 0.0183 lb (8.30 gin), and a normal impact
, velocity of 2756 fps (81i0 m/sec). For the aluminum, p = 5.25 slugs/ft3

3

(2.7 gm/cm3), Y = 1i3,500 psi (3 kbar), E = 1.03 x 107~ psi (710 kbar),

and Et =0 * The pressure-density relation is Equation 112 with

z7

:pC 2 = i.24 x 107 psi (775 kbar). The properties of air are considered

* negligible compared to those of aluminum. According to Wilkins, the

projectile perforates the slab with an exit velocity equal to 81 percent

of the impact velocity. This represents a projectile momentum loss of

55
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19 percent and a-kinetic energy loss of 34.4 percent. The present pene-

tration theory for layered targets has been applied to the same problem,

athdthe results are presented in Figures 23-26. The crucial test of the
; theory lies in i's ability to predict projectile kinetic energy loss

during the perforation processi The incompressible theory yields an

2energy loss of 54 percent, and the compressible theory reduces this to

52 percent, essentially the same answer. Thus, the present theory over-

predicts Wilkins' value for the energy loss by a minimum factor of 1.51.

f F Two possible sources of error are immediately apparent: First, as is

pointed out in Part III, paragraph 37, the theory apparently overpre-

dicts the initial target inertial resistance when the value of R is~s
significantly greater than one at impact (in this case, R = 6.29 ats

impact). Second, the target is always assumed to be in a compressive

state of stress; however, it is well known that because the backside of

the slab is a free surface, a finite region in the slab may be in a ten-

sile state of stress during the perforationprocess, thus reducing the

overall penetration resistance.

50. Within the framework of the theory as it stands, there is

little that one pan do about the suspected region of tensile stress, and

this may represent a permanent limitation on the theory. On the other

hand, the question of inertia is a bit more straightforward. Accord-

ingly, a third calculation is presented in which the target is assumed

incompressible, and the inertial terms in the projectile equation of

motion are discarded altogether. For this case, the predicted energy

loss is 32 percent, slightly underpredicting Wilkins' value of 34.4 per-

cent. This does not necessarily mean that all the target resistance is

due to shear. However, it may indicate that the theory does a better

job of predicting target shear resistance than predicting target inertial

resistance. In any case, it is emphasized that the present theory is

developed not as a perforation theory, per se, but as a penetration

theory for layered targets. For most cases of practical interest, the

layers will have comparable densities (i.e. comparable inertial resis-

tance) even though other properties may bt. radically different. Since

the application of the layered-target theory to a perforation problem
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represents,& very extreme case ndyesfarrutthtery prob-

ably-u;epresents, a reasonable extension, of the penetration theory for[ hamogeneous targets.

.Oblisue-Impact- Mainst Hard Eaith

51. At the present time, no data for oblique impact and ricochet
have been found which are appropriate for comparison with -the oblique -

impact theory developed in -Part II, i,.e.,. in the experimental results

found to date, there is not enough information given about projectiles

(eirg., CG location aiid moment of inertia) to effect a reliable test of

-the theory. -Nevertheless, an application of the thebr to the oblique

- - impact of a TDV against a hard earth target is mnade withjout experimental

verifid&tion and is presented as a sample calculation. The p~rojectile

characteristics are

W 15 lb (6.8o kg)

1=0'095-2 2
1- .95 slu'g-ft (0.1321-g-rn

Z G =.4in. (23.9 cm)

D 3.0 in (7.62 cm)

and,

1.9

The target is equivalent to frozen sand found at Camip McCoy, Wisconsin, 1

- - with

P =t 3.21 slugs/ft3 (1.66 gm/cm3)

Y.= 958 psi (66.1 bar)

6o



E 6.25 x 10 psi (4.31 kbdr) r
~ and

Et 0

(These properties have been previously used in the analysis of TDV

impact and penetration at-Camp McCoy.'19) The initial angle of obliquity

is 45 deg (0.76 rad), and the impact velocities considered are 300 fps

(91.4 m/sec) and 600 fps (183 m/sec). Initial and final projectile

positions are illustrate, for each impact velocity in Figures 27 and 28,

demonstrating the dependence of vehicle rotation on impact velocity. In

the 300-fps case, the projectile undergoes a rotation.of 15.1 deg, andIthe downward motion of the CG is stopped before the nose is fully em-
bedded. In the 600-fps case, the projectile undergoes a rotation of

4.17 deg during the embedding of the nose. The curve connecting the CG

- locations is the CG trajectory.

CG

j 4-

H --2

Figure 27. Oblique impact of TDV against hard earth
for w 45 deg and v = 300 fps
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C CG

V j Figure 28. Oblique impact of TDV against hard earth f'or
wo 4 5 deg and v 0=600 fps
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PART V: CONCLUSIONS AND RECOMMENDATIONS

52. The results presented in Part II stand as partial evidence

that the cavity expansion theory can be used as an approximate basis for

the development of a projectile penetration theory, particularly when

the effect of shear is predominant (i.e., for low values of the solid

Reynolds number R ). However, it is emphasized that the analogy be-

tween spherical cavity expansion and projectile penetration is somewhat

fortuitous, and the present penetration theory probably reflects only

the gross features of the projectile-target interaction. Thus, the

acquisition of insight into the mechanics of penetration demands the

application of whatever means are available, including empirical methods

and two-dimensional finite-difference analyses.

53. For estimates of penetration depth, the applicability of the

present penetration theory appears to lie in the approximate range

0 < R s< 100 ; but the upper bound is offered as a conservative rule ofs

thumb and not as an absolute limit. (Results of experimerts at high

values of R are needed in order to establish a more redlistic range.)
5

However, it is important to note that as R + O the problem of dynamic
S

penetration reduces to that of a static punch, in which friction may be

important. On the- other hand, as R + - shear resistance becomes
s

insignificant such that the projectile-target interaction may reduce

essentially to a fluid dynamics problem.

54. Although some footholds have been established, the develop-

ment of the penetration theory is still in an embryonic stage; some sug-

gestions for additional work are listed below:

a. At the present time, the role of target inertia in the

projectile-target interaction is only partially under-

stood, and the degree of contact between the projectile

nose and the target has not been established. Conse-

quently, further investigation is necessary to establish

the distribution of dynamic pressure on the projectile-

target contact surface as a function of projectile veloc-

ity, nose shape, and target properties.
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b. Although the cavity expansion shear resistance term ps

seems to represent a reasonable first approximation for

average normal stress at the projectile surface due to

shear in the target, some effort should be directed

toward establishing normal and tangential stress compo-

nents on the projectile .surface due to target shear

behavior. Furthermore, the variation of these quantities

with nose shape, penetration depth, and confining pres-

sure should be determined.

c The present oblique impact theory is 
limited to the

embedding of the projectile nose, with all rotation

occurring in a single plane. Moreover, this work has not

been verified experimentally. Future efforts should

first assess the accuracy of the existing theory. Then,

if necessary, the theory can be extended to include aft

body effects and motion in three dimensions. Eventually,

it may be possible to formulate a workable theory for

deep penetration at finite angles of attack and obliquity.

However, it is emphasized that overcomplication is as

undesirable as oversimplification, and modification of

the theory should proceed one step at a time to avoid the

incorporation of superfluous details.
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APPENDIX A: SPHERICAL CAVITY EXPANSION IN
A CONCENTRICALLY LAYERED MEDIUM

Introduction

1. This appendix presents an extension of cavity expansion the-
"* 10

ory developed by Bishop, Hill, and Mott, Goodier, and Hanagud and.
12

Ross. Goodier's treatment dealt with the dynamic expansion of a

spherical cavity in an infinite, incompressible, elastic-plastic,

strain-hardening medium. By means of a locking approximation in which

the plastic zone is assumed to be uniformly compressed, Hanagud and Ross

modified the theory to account for the case when the effects of compres-

sion predominate over the effects of shear. However, the inertial terms

in the Hanagud-Ross treatment do not reduce to those of Goodier for the

Srincompressible case. The present work eliminates this co.-tradiction and

also accounts for the effect of concentric layering.

2 IFgrp aProblem Formulation

2. In Figure Al, a spherical cavity of radius a(t) is surrounded

LEGEND

/ (t h(t) a =CAVITY RADIUS

b = RADIUS OF PLASTIC FRONT

/ \h = INTERFACE RADIUS

i t = TIME

ff, , , NO. I
'LAYER

4 Figure Al. Spherical cavity surrounded by concentric layers

Raised numbers :efer -to similarly numbered items in "References on

pp. 65-66 at end of main text.

Al



by two cofidentric layers of different materials. Both materials are

eElstic-plastic with linear strain-hardening, 9 1 2 as illustrated in

Figure A2.

1<Y

W

SHEAR STRAIN

Figure A2. Material behavior in shear

Both materials are incompressible in the elastic and plastic states, but
J htransition from the elastic to the plastic state is accompanied by a

finite volumetric strain e . This quantity is known as a locking

strain 12 and is introduced in order to obtain a first approximation

to the effect of compressibility. Although e£ is taken to be constant

in the present analysis, it must be a function of pressure to have any

physical meaning. However, the variation of c with pressure does not

alter the analysis or conclusions of this appendix, and a discussion of

the locking epproximation is given in Appendix B.

3. The elastic and plastic zones are separated by a spherical

plastic front of radius b(t) (Figure Al). Since b(t) is the only

radial location where compression occurs, it also represents a shock

front where density and stress are discontinuous. The equation of mo-

tion for spherical symmetryI '1 2 at r 47h on either side of b(t) is
then

S jA2
2A



r 2 tD

r r (a - r =  g P < r < b (A2)

where

a = radial stressr
00C( = tangential stress

j r = radial coordinate

0 = polar coordinate

I v = radial velocity in the elastic region

v -radial velocity in the locked plastic regionIL 4. The material is required to be stress-free as r + = , and the

discontinuity in ar at r = b is defined by

Aab b (A3)

where (b is the limiting value of a as r + b in the elastic

region, and -- is the corresponding quantity in the locked plastic

region. The equation of motion is then integrated with respect to r

from r = ' to r = a , accounting for the discontinuity at r = b , so

that the compressive normal stress at the cavity surface is given by

Swhee p(t) -a (a,t) = Aab + Im(a,b) + Im(b,-) + Is(a,) (Ah)

S where the momentum integrals I (a,b) and I (b,-) aegiven by

a b

and the general shear integral is defined by

.I, A3

f f
2[ " • b
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I(rl 3 r 2 ) 2 (a a r) (-A6)

Inertial Terms

5. Attention is now focused on the terms Ab , Im(a,b) , and

I (b, ) which embody the inertial effects in-Equation Ak. Consider

first the stress discontinuity Aab at r = b(t) Conservation of

mass at b(t) requires thatU2 l p vb

pt( -v&)=0( v) at r,= b (AT)'

where a dot denotes time derivative. Equation A7 leads to

v£- czb

v - at r b (A8)

where a is the locking compressibility defined by

a- --1 - 1 - e (,A9)Pk

and

C9 ln (--) (Ala)

Conservation of momentum at b(t) requires that11 '1 2

b = 0 b - v£) - pv(b - v) at r = b (All)

* IIncorporating Equation A8 in Equation All yields

,Ak

I, A
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Conservation of mass in~ th lcked( plat rongie rise to~ A2

f(t
v 9 (r,t) 1 2- (A13)

r

and
ft( t)

v9( t2 at r =a(t) W

Thus,

f a (Al5)

Likewise, conservation of mass in the elastic region demands that

v(r,t) = c t) (A16)
r2

Substituting Equations A13, A15, and A16 into Equation A§ and evaluating

at r =b(t) obtains

2. 2-
f(t) aa ab (A17)I:Consolidating the definition of D/Dt given in Equations Al and A2 with

Equations A13 and A16 resul~ts in

v1 9 . 2f2 22
- - and -- - (A18)Dt- 2 r5  Dt 2 5rr r r

By combining Equation A18 with Equation A5, the momentum integrals

become

A5



I~,b) 1 b C -2 (A19)

and

I (b,) = -2 (A20)r" r
. b

6. So far, the discussion has avoided explicit consideration of

the layer interface h(t) . However, the location of b(t) relative to

h(t) determines the character of the momentum integrals I (a,b) and
m

M (b,-) as well as the stress discontinuity A b . Denoting first and

second layer properties by the subscripts 1 and 2, respectively, examine

the situation when b < h in Figure A3 below.

LEGEND

a =CAVITY RADIUS

h b = RADIUS OF PLASTIC FRONT

h = INTERFACE RADIUS

Figure A3. Relative location of cavity surface, plastic
front, and layer interface when b < h

For this case,

f 2f2

Im(ab) =P dr  b < h (A21)
m kf(r2 r5)

and

-_--A6



f 22
S(-2 - - 2 -) d "b < -h (A22)

Evaluating integral in Equations A21 and A22 and employing Equation A13

in Equation A2 result in the inertial terms (Equation A) for b < h

as follows:

A b 1 b, (b 2 b< h (23)'

I C1,b) p f2 b < h (A24)
z~eb) o a  2 k - f7. -

, = 1 + -1 -f [+ 1

7. In contrast to Figure A3, Figure A4 illustrates the situation

when b >,h.

LEGEND

a =CAVITY RADIUS

~~ = INTERFACE RADIUS

= RADIUS OF PLASTIC FRONT

Figure Au. Relative location of cav" y surface, layer
interface, and plastic front when b > h

For this case,

Im(ab) r 2 - 2 r + p 2  f2 dr

b > h (A26)

A7
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and

V 0I< j(b,6-) = f (L2 42}2-) d b >h (A27)

Evaluating the integrals in Equations A26 and A27 and 'substituting Equa-

tion A13 into-Equation A12 result in the inertial terms (Euqation A4)
1 for b >h:

2 pk

= , b>h (A28) $

A- If -_ -t 2 b 2 A9

I 1

(a~bb

\/

'M k£i+ A(h )

122

f2 2(h 4 4 b >h (A29)

I(b,-) = p2  - b > h (A30)
2b4  '

Shear Terms

8. Consider the term Is (a,-) , which constitutes the effect of

shear in Equation A4; the appropriate stress-strain relations1 2 are ex-

pressed as

2E(se  e r  elastic state

aG - ar =(A31)r 2 -

Y + Z- Et(Ce- ) plastic state

where E and Et are elastic and strain-hardening moduli, Y is

yield strength, and c and s are radial and tangential strains.

-- - . IA8
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The. locking assumption implies that

o , elastic state

er.+ 2c = (A32)

ej , plastic state

A

The quantities E , Et , Y , and e., are material constants. It is

appropriate to express the tangential strain as 9 1 2

O Inr (A33)r
0

where r and r are initial anod instantaneous particle positions,0

respectively. Combining Equations A31-A33 yields

'2E into r > b

Ce - r  
(A34)

{ 2Et n r - , r < b-

where the elastic and locked plastic regions are 5eparated by the plas-

tic front b(t) . Note that the shear stress a - ar  does not have to

be continuous for Equation A6 to exist; piecewise continuity is suffi-
21exssa r=h

cient for existence. A discontinuity in a 0 r exists at r h

since this is the material interface where the material properties E ,

E t , Y , and e k are discontinuous. Another discontinuity in ae r
exists at the plastic front r = b(t) where the mat(.rial undergoes a

sudden compression. However, when e. = 0 in Equation A34, there is no

discontinuity in 00 - a at r = b # h . Restricting attention to

situations where «e.1 << 3Y/2E t  reduces Equation A34 to

b

2(E - Et) in Y m ' I << 3Y (A35)
A t 1 

at r b(t) , where b°  is the initial position of a particle located

at b(t) . By rearranging Equation A35, the quantity 0 is defined by

A9



in Y (A6
b-n - 2(E - Et) (A36)

and it follows that

b -be"  (A37)

Conservation of mass in-the elastic region requires that

r -b r -b . r > b (A38)

Substituting Equation A37 into Equation A38 and rearranging results in

in1- _ h- -1 e-3 1
in - [ -n , r > b (A39)

rc 3 Lr 3 J

9. In the locked plastic region surrounding a cavity of radius

R(t) and initial radius R , conservation of mass demands that11 '
12

0} 0~ R) pt (r - R), R < r < b (Ah0),

which gives rise to

r__ _ 1 c 1 in - -- (*lin - - r3 R < r < b

where

and
1/31

Rp* R (Ah2)

Incorporating Equation A39 into the first of Equation A34 and integrating

with respect to r from r = r1  to r = r2  for constant E obtains

AlO
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2 f (rj$' )  3E b r 1 <r < (A14L) !
71

~~with the restriction that 8 <« 1 . Likewise, employing Equation Ak1 in

the second of Equation A31 and integrating from r - ro1 to r = 2 for . ,
, ~constant Y and Et  results in '

rt

rF i r2 ,

2 3Y 3

_' 1 ) < r I r 2  < (A44)

3r 3 3j.

Rr <

(Note: Equations A t4 and A45 are evaluated in e ng ii

tions A42, A and A45 now make evaluation of Equation A6 straight-

~forward. With a(t) and h(t) representing cavities relative to the

" in the same order in Equation A42 by a, , a , and a and then by
0h

cna h , and Et = hinsotha

- PAa 7  adP 2h3 Ak6

Pz3m 3 mi

i where the subscripts 1 and 2 denote first and second layer properties.

10. Examining fir-st the case where b(t) < h(t) in Figure A3

2 411

~makes it possible to rewrite the shear term in Equation A4 as

s(a,) = s(ab) + Et + I(h,) , b < h (A17)

Applying Equations A4 and A45 to Equation A 7 then produces

h*. h Andh sota

!0



SIb 4 '~' a*\3 m a*

1 2b1<h (A8)

I" For the case where b(t) > h(t) in Figxure A4, Equation A]47 is replaced

~by I (a,) = I+(a,h) + h,b) + I (b,) b > h (A48)

s s s- s

By means of Equations A44 and A45, Equation A49 is superseded by

Is (a ,)  2Y1 in m 3m

+ 272n a Et '

m1

3m 3]
b h

+ 2Y ln-+-E2 h 9 b231m()i 1
mi=l

+ 2E2 b > h (A50)

Relations Among a(t) , b(t) , and h(t) i
t Ij

11, First, examine Equations A38 and A40 for the case

b(t) < h(t) . Replacing r and r°  by h and h in Equation A38
00

and combining with Equation A37 yields

h3 - 3  3 (A51)

Likewise, replacing r ,r R and P by b , b , a , and a , io

A12



respectively, in Equation A40 and combining with Equation A37 results in

the: expression

a 3 6b , b < h (A52)

where

Pl -U0

61 1 --- (A53)~P1

and a* is given by the first of Equation A46. Evaluating Equation A51

at b h obtains

h h 0 e 1@ b =h (A54)

Now since i < <  , it is appropriate to make the approximation

h- h , b < h (A55)

0 -0

By restricting attention to cavities which expand to more than twice the

initial radius a , it is acceptable to replace the first of Equa-

tion Al6 by

a a5 a (A56)

so that Equation A52 reduces to

3 b3

a3  6 b < h (A57)

and

2. 2L[. 2 lb2(A58)a a=6 b b b <h 0(A8

12. When b(t) > h(t) r , r , R, and R are replaced

respectively in Equation A40 by b , b , h , and h 0 Consolidating
013



the resulting equation with Equation A37 obtains

h3  b 3  b > h (A59)

* 2 0

and

h2h = A b > h (A6o)
2 0

where

P -30

2 2-2(A61)
P 2

Now Equation A40 with r , r , R , and R replaced respectively by

h, h , a ,and a0 becomes
00

Ph- a3)= P1(h3 -a , b > h (A62)

By rearranging and combining with Equations A46 and A56, Equation A62

reduces to

3 3 p 3  3 + 3

h= a +-h -. +-h (A63)
P 0 Pt 0

1, 1

and

h2 h2. 62b2 a 2 , b > h (A64)

-Combined Effects

13. Inserting Equations A58 and A6h into Equation A17 produces

i, b < h 0

(t)= (A65)

C2 a2 A b > h°0

where

A14



1-
1 6

C = and C = 2 (A66)
1 1-a 2 1-a1 2

Using Equations A15, A58, and A65 in Equations A23-A25 results in

Aab = 1 -1 a) 2 b < h (A67)

2 ,(1 (aA

- I(a'b).= p1 laK + 2a 1 <h0 A8
20

SI(b,-) C (ad + 262 a) + P2 -a] 1 la

- 4] b < h (A69)
[P 1 (-j4 o h

By means of Equation A56, Equation A48 reduces to

Is(a,-) = 2Y1  n Et

L/ m=l

4 3 El~ - <h (A70)
3  \h 3 / 3+4 1 2 h 3  0 h

where 1

- (ATi)
m=l m

Incorporating Equations A15, A64, and A65 in Equations A28-A30 yields

A15



I2
a 2PL(1- .2

b 20 - ) b>h (A72)

2 0/~A\

1.b') 2 2( a 2 2  + ~~ > h (A74)

I (a,=) ' = p271 in --ha -9 Et14  a I) , b a-_ h
I .aCb( (ad + 2a'

m h

23 (A73)

+ E2 -2 a i a b > h °
2 0

I~~ ~ B ut li in 1E.uFor onsste n A Equatre io A50-1  he com pes si e n r a

I I(a,-)' =2Y Ps t [L +  2 +

m3j

+ Et 1 + aE b>h (A75)

9 t m2 [h 3 + 2 2 b 0 A5
+-l

Summary of Results

111. For consistency with previous work~ the compressive normal

I j~ stress ptt) at the cavity surface is expressed as

P(t) p5 + P(B 1 ~ (A7)

where

A16



PS I (a,-) (A77)

and

I lar + B2  = Adb + Im(a,b) + (b,-) (A8)

For the case where b < h o , ps, B, and B2 are given by

4 O

b<h (AGO)

B. . + p 2  b <h (A8)

b+16)l( ) 7, 3h 3

2B + a 6 _ a-
B2 =2 1  + ( bh! I

l a 2\ a
p 4 ] b2<hh (A81)

4 0

where h adab from Equation A57. For the case where

h PS B, ,and B2 are expressed as

' + E 2 -3 b.

pe 2Y In +-4 2Y In-i
a. a t 2 h-

icc
2 t 2 - + L" 02E2 b >li (A82)

2 r 2).I;



- r2

a/ 12 P 2a b
B, h h b- 0 " b>h (A83)

P~a2
9 -LO2  /a2

B-2B% + 2 . _

1 a

a[k Pk - ' 2 2
b/ (a' (I:)-

where

h3 - a3 + (A85)

P1 o

2-2

_.~_.from Equation A63, and b is given by Equation A59. Note that at

matical treatment of~ the problem and does not necessarily correspond to

a physical discontinuity. What happens is that -at b = h , the speed at

-which the plastic fotis propagated undergoes a step change due to the

discontinuity in Y and E . This is an elastic effect and can occur

even if the materials are incompressible.

" Special Cases

15. When both layers have exactly the same properties (i.e. the '

homogeneous case), then by dropping the subscript, Equation A57 becomes

2"

p1 lb >1/ I (A84)

P1 E 2 1 m 2 0

: ~~3 Ps = -a3 n6 9 + 1 113 (A85) !

" m=l 1

P t 08
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Bad (A88)

, 1 -2 - A?/3

B-1 = 3 + (A89)

where.

p~6 1  L e73 0  (A90)

" t

'1 0
t =h - (A99)jP

1 1 (A93)

$ .s Ps-"f n3/ A6

15. When a Go0 ,the material is incompresib e,'and Equa-

tions A67 and A68 reduce to

B =1 (A94)

22 -(A95)

9-1

Since it is usually true that9  Y < E and Et < E ,then

p Y(1 + l2E)+ IT E (A96)

in agreement with Goodier. On the other hand, when compressibility

predominates over shear, 0 << a , and '
j 6 a (A97)



1/31
B 1 -1 / (A98)

A

and

2 2 2A9

in agreement with Hanagud and Ross. 1

A20



APPENDIX B: COMPRESSIBILITY

. Introduction

p . The cavity expansion theory developed in Appendix A-and the

penetration theory developed in Part I! both utilize the concept of

lockigbehaviorl l ! 2 to estimate the effect of material compressibility

at any given instant. Moreover, within the context of the cavity expan-

sion theory and the present penetration theory, the incorporation of

compressibility constitutes a perturbation of the basic incompressible

theories set forth by Goodier. In this appendix a technique for

approximating the effective locking strain e is developed in, which

(I the material is first treated as incompressible in order to obtain an

approximate value for the average dynamic pressure in the plastic zone.

This pressure can then be used to estimate the average volumetric strain

; j (i.e., the effective locking strain eu) in the plastic zone when the

material is only slightly compressible.

Average Dynamic Pressure in the Plastic Zone

2. Suppose there is a spherical cavity centered at the origin

with radius a(t) , radial velocity A , and radial acceleration .

Furthermore, suppose that the cavity is surrounded by an incompressible

homogeneous material whose behavior in shear is rate independent. The

situation is spherically symmetric, and the dynamic pressure P at any

r > a in the material is
2 2

=pr(ag + 2 2) a2 (Bl)

where r is the radial coordinate, p is density, and the material is

stress-free as r . The average value of P in a region a < r < b

is

Bi

L



P ave (B2)

] r? dr (2

Employing Equation BI in Equation B2 and evali atihg the integrals re-

sults in the expression

3 .

P p 3p (B3)ave 2 .t e

Suppose now that b represents the radius of the plastic front for an

incompressible elastic-plastic material as described in Appendix. A

(where p p£ ) such that Equations A86 and A90 reduce to

i a 61o/3 (B4)
b, I

and

I = 1 - e-3  (B5)

Equation B4 is now incorporated in Equation B3 so the average dynamic

pressure in the plastic zone a < r < b for an incompressible material

is

(ad + 2A ) _ 12-_ h/3
avP~ 3 I (B6)

Equation B6 can now be used in conjunction with a pressure-density curve

to obtain a first approximation to the averae volumetric strain (i.e.

locking strain) c£ in the plastic zone a < r < b as long as

Je«I << 1 . Thus, for materials which are only slightly compressible,

Equation B6 can be used to obtain a value for c which is appropriate

B2
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for the cavity expansion theory in Appendix A. For a two-layer situa-

tion, Equation B6 is used in turn for each layer. This may lead to an

underestimation of Jej for the first layer and an overestimation for

the second layer, but a reasonable approximation to the average effect

of compressibility for both layers is obtained.

Compressibility in the Penetration heory

1 3. An upper limit on P for projectile penetration is obtainedave

by replacing i with the projectile velocity 4 and dropping the mate-

rial acceleration term ad (Appendix C) in Equation B6 such that

.2 1I" ,.2 261/- 361 +

P ave 2 pq - 61

IEquation B7 can be used with a pressure-density curve for a given target
material to obtain an upper limit on Ie£1 at any velocity 4 as long

as l 1 . Subject to this limitation,

a =1-c (B8)

B3I;
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APPENDIX C: TARGET ACCELERATION

Introduction

1. In Goodier's original penetration theory for rigid spherical
.9,10

projectiles, the projectile equation of motion is

23 Bs 3p = (Cl)
(M aira p 1  _7r 0p + a Z2

The development of this equation is discussed in Part II, paragraph 9.
The term (2/3)a3p B 1 reflects Goodier's assumed variation of target

acceleration over the frontal surface of the projectile, and the quantity

13
(2/3)Ta-p' is generally known as the added mass for the sphere. When

R << 1 (Part II, Equation 5), this term has only a small effect on

penetration depth predictions; but when the added mass is comparable to

projectile mass M (e.g., Ra Z 0.1), then the effect of this term
a i

becomes significant.

The Effect of Added Mass on Penetration Predictions

2. Consider the projectile equation of motion (Cl) which without
the term (2/3)ffaoPB 1 reduces to Ji

M= + q (02)

where deletion of the added mass is tantamount to disregarding target ac-

celeration. Equation 02 is now used in Goodier's original applications

of his rigid projectile penetration theory. The results are shown in

Figures Cl-C4; the solid curves correspond to Equation Cl, and the dashed

- curves correspond to Equation 02. In these figures q is final pene-

tration depth, D is projectile diameter, v ° is impact velocity, p

is projectile density, and Y is target yield strength. In each case

discarding the added mass term improves agreement with experiment. From

these results it is concluded that the contribution of the term ra3 pB 1

Cl
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whj.h appears in Part !I, Equation 30 and elsewhere, probably represents

a high upper limit insofar as the effect of target acceleration on final

depth of penetration is concerned. Furthermore, for most applications

of the penetration theory as formulated, it appears appropriate simply

to drop the B1 term from Equation 30. However, this term is retained
as an upper limit for added mass throughout the presentation of theory

in Part II.

<c4

.,bCl.



APPENDIX D: NOTATION

a,a,a Radial position, velocity, and acceleration of spherical cavity
wall, respectively

a, Projectile radius-at point of contact with a layerginterface
a n Projectile radius at point of contact with the target surface
n

a Projectile radius at base of noseo 2

A Projectile frontal -area = ffa
0

b,h Radii of spherical plastic front and concentric layer inter-
face, respectively

B1,B2  Inertial coefficients from cavity expansion theory

C Initial sound speed0

CG Center of gravity

CRH Ogive caliber radius head

D Projectile diameter at base of nose = 2a0

E Modulus of elasticity

Et  Strain-hardening modulus

f Factor relating projectile nose shape to target inertial
n resistance

Fx  Resisting force projected normal to projectile axis of symmetry

F Resisting force projected along projectile axis of symmetry
z

G Ratio of maximum inertial resistance to shear resistance within
0 the context of penetration theory-- (PB 2

2/ps)
H Layer interface location
H 0 Initial layer interface location

I Projectile moment of inertia

I Momentum integral
m

I General shear integral
s

L Nose length

M Projectile mass

MCG Moment about CG

p Compressive normal stress on projectile surface

Pn Average value of p over the projectile nose surface

Ps Component of p due to target deformation (shear resistance)

Pl Component of p due to target inertia (dynamic pressure)

Dl



Pave Average-dynamic pressure in the plastic zone,

qi2,q Projectile, penetration depth, velocity,, andacCeleration,
respectively

qp Final depth of pendtratibn

• pt Final penetration ,depth for a blunt cylinder

q. Projectile penetration depth when the-pIastic front reachesa

layer interface
3,

Ha 7a p /M added mass parametera 0

R Nose performance ratio
n 2

H pq /Y , order of magnitude index of the ratio of inertia forces
s to shear forces, referred to as-the "solid Reynolds number"

S Location of plastic front

t Time

v Radial velocity in the elastic region

vA  Radial velocity in the plastic region

vn Normal component of particle'velocity

v Impact velocity
0
v Target particle velocityP

vt Tangential component of particle velocity

W Projectile weight

XYZ Fixed space coordinates

Y Yield strength

z Distance from projectile nose tip along axis of symmetry

z G Distance from projectile nose tip to CG

z Point where the projectile axis of symmetry intersects the
target surface

a Target compressibility =1- p/pt

0 Y12/(E - E)

y Moment arm

8 1 - (p/p/) exp (-30)

C Locking strain = ln (p/ps)

S Radial strain
r
s8  Tangential strain

4 LID

0 Polar coordinate or polar angle

D2



Ix See Equation 78

S Z/Z

.r 3.1416

p Initial target density

p Locked target density, i.e., average COmpressed density in" the
plastic zone
Limiting Value of a as r + b in the elastic region

a(-)  Limiting value of & as r + b in the locked plastic regionb r
Z Radial stressr

a6  Circumferential stress

0 Cone half-angle

PCircumscribed cone half-angle

W,w,W Angle of obliquity, rotational velocity, and angular accelera-
tion, respectively

w m Initial angle of obliquity
0

Note: A dot over any quantity denotes a derivative with respect to time.

D3
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